

GreedyNAS: Towards Fast One-Shot NAS with Greedy Supernet

Shan You^{1,2*}, Tao Huang^{1,3*}, Mingmin Yang^{1*}, Fei Wang¹, Chen Qian¹, Changshui Zhang⁴

²Department of Automation, Tsinghua University ³Dian Group, School of CST, ¹SenseTime Huazhong University of Science and Technology *Equal contributions

{youshan,huangtao,yangmingmin,wangfei,qianchen}@sensetime.com zcs@mail.tsinghua.edu.cn

Motivation

One-shot NAS: Based on the weight-sharing paradigm, One-shot NAS methods model NAS as a one-shot training process of an over-parameterized supernet, where various architectures can be directly derived. Supernet: matters as a fundamental performance estimator of different architectures (paths).

Target Assumption: The supernet should estimate the (relative) performance accurately for all paths, and thus all paths

Framework of GreedyNAS

The supernet greedily shrinks its training space from all paths (red and blue dots) into potentially-good paths (red dots), and further into candidate pool.

are treated equally and trained simultaneously.

Issues:

- It is harsh for a single supernet to evaluate accurately on such a huge-scale search space (*e.g.*, 7²¹).
- There exist many architectures of inferior quality in terms of accuracy performance.
- Since the weights of all paths are highly shared, if a weak path is sampled and gets trained, it would disturb the weights of those potentially-good paths.
- Training on those weak paths actually involves unnecessary update of weights, and slows down the training efficiency more or less.

Intuition

- block the training of these weak paths.
- Consider a complete partition of search

Multi-path Sampling with Rejection

Theorem 1 If m paths are sampled uniformly i.i.d. from A, then it holds that at least $k \ (k \le m)$ paths are from \mathcal{A}_{good} with probability

$$\sum_{j=k}^{m} \mathbb{C}_m^j q^j (1-q)^{m-j}, \qquad ($$

where
$$q = |\mathcal{A}_{good}|/|\mathcal{A}|$$
.

0.9 0.8 0.7 -q=0.5(m=10)0.6 -q=0.6(m=10) q=0.7(m=10)q=0.8(m=10)q=0.5(m=20)q=0.6(m=20)q=0.7(m=20)q=0.8(m=20) 0.1 0.2 0.3 0.4

Eq.(1) can be large; with q = 0.6, it has 83.38% confidence to say at least 5 out of 10 paths are from \mathcal{A}_{good} .

Solution: just rank the sampled *m* paths using a small portion of validation data \mathcal{D}_{val} , keep the Top-*k* paths and reject the remaining paths. **Input:** number of sampled multiple paths *m*, number of kept paths k, candidate pool \mathcal{P} 1: **if** without candidate pool \mathcal{P} **then** 2: sample *m* paths $\{a_i\}_{i=1}^m$ i.i.d. w.r.t. $a_i \sim$ $U(\mathcal{A})$

3: **else**

sample *m* paths $\{a_i\}_{i=1}^m$ i.i.d. w.r.t. $a_i \sim$ $(1-\epsilon) \cdot U(\mathcal{A}) + \epsilon \cdot U(\mathcal{P})$

5: **end if**

6: randomly sample a batch \hat{D}_{val} in \mathcal{D}_{val} 7: evaluate the loss ℓ_i of each path a_i on \hat{D}_{val} 8: rank the paths by ℓ_i , and get Top-*k* indexes ${t_i}_{i=1}^{\kappa}$ 9: return k paths $\{a_{t_i}\}_{i=1}^k$ and filter the rest

- space \mathcal{A} of two subsets \mathcal{A}_{good} and \mathcal{A}_{weak} :
- $\mathcal{A} = \mathcal{A}_{good} \bigcup \mathcal{A}_{weak}, \ \mathcal{A}_{good} \bigcap \mathcal{A}_{weak} = \emptyset,$

where for an Oracle supernet \mathcal{N}_{o} ,

 $ACC(a, \mathcal{N}_{o}, \mathcal{D}_{val}) \geq ACC(b, \mathcal{N}_{o}, \mathcal{D}_{val})$

- holds for all $a \in \mathcal{A}_{good}$, $b \in \mathcal{A}_{weak}$ on validation dataset \mathcal{D}_{val} .
- Idea: just sample from the potentiallygood paths \mathcal{A}_{good} instead of all paths \mathcal{A} ,

 $p(\boldsymbol{a};\mathcal{N}_{o},\mathcal{D}_{val}) = \frac{1}{|\mathcal{A}_{good}|} \mathbb{I}(\boldsymbol{a} \in \mathcal{A}_{good}).$

Problems:

- 1. Q: Oracle supernet \mathcal{N}_o is unknown. A: greedily use current supernet \mathcal{N}_{\dagger} as a proxy
- 2. Q: How can we accurately identify whether a path is from A_{good} or A_{weak} ?

Exploration and Exploitation Training with Candidate Path Pool

We introduce a candidate path pool to store the discovered good paths, and sample from it,

> $\boldsymbol{a} \sim (1 - \epsilon) \cdot U(\mathcal{A}) + \epsilon \cdot U(\mathcal{P}),$ (2)

Four advantages:

- 1. boosting the training efficiency 2. increasing the probability of sampling good paths $q = \epsilon + (1 - \epsilon) |\mathcal{A}_{good}| / |\mathcal{A}|$, *e.g.* from 83.38% to 99.36% for 5/10 with $\epsilon = 0.5$
- 3. stopping principle via candidate pool Stop by observing the steadiness of pool $\pi := \frac{|\mathcal{P}_t \cap \mathcal{P}|}{|\mathcal{P}|} \leq \alpha$
- 4. searching by initializing with candidate pool with pool 6UC/ GUC/ without pool Ereque

Top-1 ACC (%)

53

52

Searching Results with Same Search Space on ImageNet

Mothode	performance			supernet training efficiency			
wiethous	Top-1 (%)	FLOPs	latency	#optimization	#evaluation	corrected #optimization	
Proxyless-R (mobile)	74.60	320M	79 ms	_	_	_	
Random Search	74.07	321M	69 ms	1.23M×120	-	147.6M	
Uniform Sampling	74.50	326M	72 ms	1.23M×120	_	147.6M	
FairNAS-C	74.69	321M	75 ms	1.23M×150	_	184.5M	

A: multi-path sampling with rejection.

Experimental Settings

- Search space: MobileNetV2 inverted bottleneck with CNN kernel $\{3,5,7\}$ and expansion --MB3_K3_SE ratio $\{3,6\}$. Size 7^{21} with identity. Larger size 13²¹ with SE.
- ImageNet dataset: 50K valida- ----tion, 50K testing
- Supernet: sample 10 paths and filter 5, 1K images for path filtering, pool size 1K, SGD optimizer

MB6_K7

MB6_K3

- Searching: evolutionary NSGA-MB3_K7_SE
- MB6_K7_SE • Retraining: following Proxyless-NAS without SE and Mnasnet with SE. MB6_K7_SE

Random Search-E	73.88	320M	91 ms	$1.23M \times 73$	-	89.8M
Uniform Sampling-E	74.17	320M	94 ms	1.23M×73	-	89.8M
GreedyNAS	74.85	320M	89 ms	1.23M×46	2.40M×46	89.7M
GreedyNAS	74.93	324M	78 ms	1.23M×46	2.40M×46	89.7M

Comparison with State-of-the-art NAS Methods on ImageNet

Mothoda	Top-1	FLOPs	latency	Params	training	search	1
wiethous	(%)	(M)	(ms)	(M)	(Gdays)	(Gdays)	
SCARLET-C	75.6	280	67	6.0	10	12	e.0
MnasNet-A1	75.2	312	55	3.9	288 [‡]	_	
GreedyNAS-C	76.2	284	70	4.7	7	< 1	ation
FairNAS-C	74.7	321	75	4.4	10	2	0.7 - Uniform Sampling Greedy Sampling
SCARLET-B	76.3	329	104	6.5	10	12	
GreedyNAS-B	76.8	324	110	5.2	7	< 1	0.6 125 250 500 1K 2K 5K 10K
SCARLET-A	76.9	365	118	6.7	10	12	number of validation images
EfficientNet-B0	76.3	390	82	5.3	_	_	
DARTS	73.3	574	_	4.7	4^{\dagger}	_	8.0 est
GreedyNAS-A	77.1	366	77	6.5	7	< 1	0.0 gettic
Rank correlation	coefficie	ent of	1000 paths	measured	a by th	ne loss (ACC)	
of 1K vs 50K	validat	tion im	nages w.r.t.	different	types	of supernets.	• $\frac{1}{2}$ 0.4 • Spearman rho
Spearma	n rho		Ken	dall tau			8 0.2 Kendall tau
random uniform	(ACC) g	reedy 1	random unife	orm(ACC)	greedy		
0.155 0.968(0.8	869) 0 .	.997 (0.113 0.851	1(0.699)	0.961		0 2K 4K 8K 10K 14K 30K 15W training iterations